Skip to main content

Clay Minerals

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Clay minerals are a diverse group of minerals that are fine grained and crystalline and ultimately form from the aqueous alteration of primary igneous minerals at or near the surface of the Earth. They have a layered structure, commonly consisting of repeating sheets of Si tetrahedra and Al octahedra . The wide diversity of clay minerals stems from the way that these sheets stack together and the identity of ions that commonly substitute into the clay mineral structure. Due to their unique layered structure and their effectiveness as ion exchangers, the formation of clay minerals can have a significant impact over the chemical and isotopic compositions of solid and fluid phases during weathering.

Introduction

Clay minerals are a highly diverse and abundant group of minerals that derive from the interaction of water with rock in the Earth’s crust. Because clay minerals are often found in the clay-size fraction of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Angove, M. J., Johnson, B. B., and Wells, J. D., 1997. Adsorption of cadmium (II) on kaolinite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 126(2), 137–147.

    Article  Google Scholar 

  • Aoyagi, K., and Kazama, T. 1980. Transformational changes of clay minerals, zeolites and silica minerals during diagenesis. Sedimentology, 27(2), 179–188.

    Google Scholar 

  • Appelo, C. A. J., and Postma, D., 2005. Geochemistry, Groundwater and Pollution. Leiden, The Netherlands: CRC Press.

    Google Scholar 

  • Bailey, S. W. 1972. Determination of chlorite compositions by X-ray spacings and intensities. Clays and Clay Minerals, 20(6), 381–388.

    Google Scholar 

  • Bigeleisen, J., and Mayer, M. G. 1947. Calculation of equilibrium constants for isotopic exchange reactions. The Journal of Chemical Physics, 15(5), 261–267.

    Google Scholar 

  • Bolland, M. D. A., Posner, A. M., and Quirk, J. P., 1976. Surface charge on kaolinites in aqueous suspension. Soil Research, 14(2), 197–216.

    Google Scholar 

  • Chamley, H., 2013. Clay Sedimentology. Berlin: Springer Science & Business Media.

    Google Scholar 

  • Clauer, N., Srodon, J., Francu, J., and Sucha, V., 1997. K-Ar dating of illite fundamental particles separated from illite-smectite. Clay Minerals, 32(2), 181–196.

    Article  Google Scholar 

  • Dixon, J. B., 1989. Kaolin and serpentine group minerals. In Minerals in Soil Environments. Madison, WI: SSSA Book Ser. 1. SSSA, Vol. 2, pp. 467–526.

    Google Scholar 

  • Drever, J. I., 1988. The Geochemistry of Natural Waters. Englewood Cliffs: Prentice Hall, Vol. 437.

    Google Scholar 

  • Eberl, D. D., Farmer, V. C., and Barrer, R. M., 1984. Clay mineral formation and transformation in rocks and soils [and discussion]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 311(1517), 241–257.

    Article  Google Scholar 

  • Ehlmann, B. L., Mustard, J. F., Fassett, C. I., Schon, S. C., Head III, J. W., Des Marais, D. J., … and Murchie, S. L., 2008. Clay minerals in delta deposits and organic preservation potential on Mars. Nature Geoscience, 1(6), 355–358.

    Google Scholar 

  • Ehlmann, B. L., Mustard, J. F., Murchie, S. L., Bibring, J. P., Meunier, A., Fraeman, A. A., and Langevin, Y., 2011. Subsurface water and clay mineral formation during the early history of Mars. Nature, 479(7371), 53–60.

    Article  Google Scholar 

  • Fogg, A. M., and O’Hare, D., 1999. Study of the intercalation of lithium salt in gibbsite using time-resolved in situ X-ray diffraction. Chemistry of Materials, 11(7), 1771–1775.

    Article  Google Scholar 

  • Galan, E., and Ferrell, R. E., 2013. Genesis of clay minerals. In Handbook of Clay Science. Amsterdam: Elsevier, Vol. 5, p. 83.

    Google Scholar 

  • Gislason, S. R., Arnorsson, S., and Armannsson, H., 1996. Chemical weathering of basalt in Southwest Iceland; effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296(8), 837–907.

    Article  Google Scholar 

  • Grotzinger, J. P., Sumner, D. Y., Kah, L. C., Stack, K., Gupta, S., Edgar, L., … and Milliken, R., 2014. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science, 343(6169), 1242777.

    Google Scholar 

  • Grotzinger, J. P., Gupta, S., Malin, M. C., Rubin, D. M., Schieber, J., Siebach, K., … and Calef, F., 2015. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science, 350(6257), aac7575.

    Google Scholar 

  • Kelley, S., 2002. K-Ar and Ar-Ar dating. Reviews in Mineralogy and Geochemistry, 47(1), 785–818.

    Article  Google Scholar 

  • Kerr, P. F., 1955. Hydrothermal alteration and weathering. Geological Society of America Special Papers, 62, 525–546.

    Article  Google Scholar 

  • Krauskopf, K. B., and Bird, D. K., 1967. Introduction to Geochemistry. New York: McGraw-Hill, Vol. 721.

    Google Scholar 

  • Ma, C., and Eggleton, R. A., 1999. Cation exchange capacity of kaolinite. Clays and Clay Minerals, 47(2), 174–180.

    Article  Google Scholar 

  • Merkel, B. J., Planer-Friedrich, B., and Nordstrom, D., 2005. Groundwater geochemistry. In A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems. Berlin: Springer, Vol. 2.

    Google Scholar 

  • Mermut, A. R., and Cano, A. F., 2001. Baseline studies of the clay minerals society source clays: chemical analyses of major elements. Clays and Clay Minerals, 49(5), 381–386.

    Article  Google Scholar 

  • Milliken, K. L., 2003. Late diagenesis and mass transfer in sandstone shale sequences. In Treatise on Geochemistry. Amsterdam: Elsevier, Vol. 7, pp. 159–190.

    Google Scholar 

  • Murray, H. H., 1991. Overview – clay mineral applications. Applied Clay Science, 5(5), 379–395.

    Article  Google Scholar 

  • Murray, H. H., 2000. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 17(5), 207–221.

    Article  Google Scholar 

  • Nesbitt, H. W., Fedo, C. M., and Young, G. M., 1997. Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and muds. Journal of Geology, 105(2), 173–192.

    Article  Google Scholar 

  • Odom, I. E., 1984. Smectite clay minerals: properties and uses. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 311(1517), 391–409.

    Article  Google Scholar 

  • Papelis, C., and Hayes, K. F., 1996. Distinguishing between interlayer and external sorption sites of clay minerals using X-ray absorption spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 89–96.

    Article  Google Scholar 

  • Peacock, C. L., and Sherman, D. M., 2005. Surface complexation model for multisite adsorption of copper (II) onto kaolinite. Geochimica et Cosmochimica Acta, 69(15), 3733–3745.

    Article  Google Scholar 

  • Perry, E., and Hower, J., 1970. Burial diagenesis in Gulf Coast pelitic sediments. Clays and Clay Minerals, 18(3), 165–177.

    Article  Google Scholar 

  • Savin, S. M., and Epstein, S., 1970. The oxygen and hydrogen isotope geochemistry of clay minerals. Geochimica et Cosmochimica Acta, 34(1), 25–42.

    Article  Google Scholar 

  • Segonzac, G. D., 1970. The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology, 15(3–4), 281–346.

    Article  Google Scholar 

  • Sheppard, S. M. F., and Gilg, H. A., 1996. Stable isotope geochemistry of clay minerals. Clay Minerals, 31(1), 1–24.

    Article  Google Scholar 

  • Singer, A., 1980. The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth-Science Reviews, 15(4), 303–326.

    Article  Google Scholar 

  • Slaughter, M., and Milne, I., 2013. The formation of chlorite-like structures from montmorillonite. Clays and Clay Minerals, 1960, 114–124.

    Article  Google Scholar 

  • Sposito, G., Skipper, N. T., Sutton, R., Park, S. H., Soper, A. K., and Greathouse, J. A., 1999. Surface geochemistry of the clay minerals. Proceedings of the National Academy of Sciences, 96(7), 3358–3364.

    Article  Google Scholar 

  • Strawn, D. G., and Sparks, D. L., 1999. The use of XAFS to distinguish between inner-and outer-sphere lead adsorption complexes on montmorillonite. Journal of Colloid and Interface Science, 216(2), 257–269.

    Article  Google Scholar 

  • Strawn, D. G., Palmer, N. E., Furnare, L. J., Goodell, C., Amonette, J. E., and Kukkadapu, R. K., 2004. Copper sorption mechanisms on smectites. Clays and Clay Minerals, 52(3), 321–333.

    Article  Google Scholar 

  • Tan, D., Yuan, P., Annabi-Bergaya, F., Dong, F., Liu, D., and He, H., 2015. A comparative study of tubular halloysite and platy kaolinite as carriers for the loading and release of the herbicide amitrole. Applied Clay Science, 114, 190–196.

    Article  Google Scholar 

  • Thiry, M., 2000. Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth-Science Reviews, 49(1), 201–221.

    Article  Google Scholar 

  • Urey, H. C., 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society (Resumed), 562–581.

    Google Scholar 

  • Velde, B. B., and Meunier, A., 2008. The Origin of Clay Minerals in Soils and Weathered Rocks: With 23 Tables. Berlin: Springer Science & Business Media.

    Google Scholar 

  • Virta, R. L., 2013. Common clay and shale. Mining Engineering, 2013(July), 36–37.

    Google Scholar 

  • Wilson, M. J., 1999. The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34(1), 7.

    Article  Google Scholar 

  • Wimpenny, J., Colla, C. A., Yu, P., Yin, Q. Z., Rustad, J. R., and Casey, W. H., 2015. Lithium isotope fractionation during uptake by gibbsite. Geochimica et Cosmochimica Acta, 168, 133–150.

    Article  Google Scholar 

Download references

Acknowledgments

Prepared by LLNL under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josh Wimpenny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Wimpenny, J. (2016). Clay Minerals. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics